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Abstract
Multiresolutional Decision Support Systems gain better
performance and higher accuracy by the virtue of building
highly efficient multiresolutional representation and
employing multiscale Behavior Generation Subsystem
(Planning and Control ). The latter are equipped by devices for
unsupervised learning that adjust their functioning to the
results of self-identification. We show planning and learning to
be joint processes.
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1. Introduction
Multiresolutional Representation (MR)

of the World should be considered one of the tools
in the arsenal of Knowledge Management [1]. It is
the tool that is widely applied but is scarcely
noticed, probably because of its overwhelming
omnipresence. The concept of MR can be
illustrated by the series of pictures shown in
Figure 1 (a - f). The enhanced set of these pictures
with much more details can be seen in [2]. The
resolution of each subsequent image is increased
by an order of magnitude while the are of
observation is simultaneously reduced by two
orders of magnitude. It is not difficult to deduce
that as far as the underlying knowledge is
concerned, the objects in the image f are contained
in the image e  [(skin texture)⊃(hand)], the objects
of the image e are contained in the image d
[(hand)⊃(sleeping person)], the objects of the
image d are contained in the image c [(sleeping
person)⊃(picnic)], the objects of the image c are
contained in the image b [(picnic)⊃(green lawn)],
and the objects of the image b are contained in the
image a [(green lawn)⊃(part of the city)].

This MR nestedness of sub-processes
and sub-systems of the overall processes and
system in not obvious in a standard cursory
analysis, it can be discovered only as a result of
special observations (computer vision equipment)
and investigative analysis. More importantly, it is
not obvious that this nestedness of entities and
their properties is important (if necessary at all)

for supporting the decision making activities at
each level of resolution. Yet, all images in Figure
1 are tightly linked by the prior cognitive
activities that are unified by identical processes of
generalization performed upon higher resolution
images to obtain a lower resolution image. Similar
processes of instantiation allow for receiving each
higher resolution image from the lower
Resolution. Actually, not the process of sensing or
the process of image edges detection and
segmentation (and others) determine further
image understanding and interpretation but rather
the joint processes of generalization and
instantiation that are executed upon these images
top-down and bottom-up.

As the signals measuring and
processing is conducted, at each particular level of
resolution they contain a different package of
frequencies (Figure 2). It demonstrates that the
granularity of representation is correlated with the
bandwidth of the signals at a level.

Why do we encounter this phenomenon:
multiresolutional knowledge representation? Why
the mechanisms emerged of generalization and
instantiation? The reduction of complexity via
reduction of “multiplicity” could only be done by
the virtue of grouping and representing the group
by a single symbol. This semiotic principle
emerged because of the need to reduce
computational burden. Computational benefits for
a particular example of knowledge representation
associated with planning is given in [8, 9].
The system of representation based upon
recursive grouping/decomposition incorporates
and uses the algorithms of generalization and
instantiation in different incarnations that depend
on circumstantial factors as for example, the
information we are dealing with, or the
subsystem of the world where the results are
applied. Thus, the learning system must employ
the same tools: labeling the entities in order to
deal with concise notations (symbols), grouping
the entities, decomposing them if information
details are required. Learning systems use the
same computational mechanisms.
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         Figure 1. Consecutive increasing the resolution of representation

The decision support system (DSS)
treats knowledge as an entity suggested in [1]: it
employs the awareness of familiarity gained by
experience for storing experiences as well as for
constructing decisions (including plans and
controls) that ensure functioning of a goal-
oriented system with increased performance

index. MR gives an opportunity to minimize the
value of computational complexity in a subset of
DSS that organizes knowledge by joint processes
of generalization and instantiation and use nested
MR-search for converging to a recommended
solution. This concept was introduced for
planning and control purposes in 1986 [2] and
explored in depth in subsequent works [3-10].
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   Figure 2. Multiresolutional representation (a-
low resolution, b-mid-resolution+low
resolution, c-the sum of signals of all levels)

All these processes dwell on the processes of
learning employed by MR-DSS.

2. Decision Support of Behavior Generation

The structure of power station control
system shown in Figure 3 was successfully
tested at Delmarwa Power Station, DE, USA
[11]. is required in all faculties of a system
shown in Figure 3. Three levels of resolution are
demonstrated Low (“Task Level”), Middle
(“Component Level”) and High (“Actuation
Level”). Each level forms a loop closed through
connection 1. Each of these loops is a loop of
“closure” [9] and is equivalent to the Elementary
Loop of Functioning (ELF) described in [6, 7, 8].

The vertical subsystem 5 (Plant) from
Figure 3 is equivalent to subsystem Sensors,
World and Actuators from the Elementary Loop
of Functioning that is described in [8]..

Figure 3. Architecture of the Power Station Multiresolutional Decision Support System for energy efficient
Planning/Control
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Figure 3 contains several subsystems
that should be added to the standard ELF if there
is a need to equip the system by
Multiresolutional Decision Support: these are the
systems of Learning and Prediction. Learning
enhances Representation, while Prediction,
together with Stabilization arrives at the
subsystem of Arbitration (6). Standard ELF is
the core structure demonstrating the important
property of any functioning system, including
Intelligent Systems: it shows the property of
closure. The meaning of closure is in the fact
that the proper functioning requires the loop of
information flows to be closed.

What happens in the subsystem of
Behavior Generation? The latter has two
mechanisms: 1) maintenance of the ontology that
organizes the inventory of the known symbols
and their definitions and keeps relationships of
nestedness with ontology subsystems of other
resolution levels, 2) combinatorial search engine
that performs planning  i. e. creates alternatives
of imaginary (possible and desirable) worlds,
and 3) simulator engine that explores expected
behaviors of the alternatives of the imaginary
worlds and/or monitors the execution processes.

The goal of functioning to be achieved
by the system arrives at the subsystem of
Behavior Generation [9] that is equipped by
mechanisms of planning and execution. At the
present time, these mechanisms cannot be
considered as thoroughly studied, and the general
theory of planning can hardly be attempted. We
will discuss a subset of problems in which the
goal is defined as the attainment of a particular
state or a particular string of states. Other types
of problems can also be imagined: in chess the
goal is clear -to win but this goal demand
achieving a special configuration (mate-
situation) but it cannot be achieved by arriving at
a particular pre-determined position in a space
(even in a descriptive space.) Most of the
problems related to the theory of games and
linked with pursuit and evasion are characterized
by a similar predicament and are not discussed
here.

Planning is understood as searching for
appropriate future trajectories of motion leading
to the goal. Searching is performed within the
system of representation (simulation) that gives a
tremendous advantage in comparison with
searching via trying.

3.  Planning in a Representation Space with a
Given Goal

The world is assumed to be judged upon
by using its Space of Representation, or its State
Space which is interpreted as a time tagged
vector space with a number of properties. Any
activity in the World (State Space or
Representation Space) is called motion. It can be
characterized by a trajectory of motion with the
“working point” or “present state” (PS) that is
traversing the space from one point (initial, or
state, IS) to one or many other states (goal states,
GS.) The goal states are given initially from the
external source as a “goal region”, or a “goal
vicinity” in which the goal state may not be
completely defined in a general case. This vision
of the problem of Behavior Generation was
dominating in the area of Control Systems.
Planning was unified with Control only recently
when it became clear that both Planning and
Control are involved into anticipation of the
preferable motion (off-line) with some
appropriate correcting activities (on-line).

One of the stages of planning (often the
initial one) serves for defining where exactly is
the GS within the “goal region.”  In this paper,
we will focus upon a subset of planning
problems where one or many GS remain
unchanged through all period of their
achievement. Traversing from IS to GS is
associated with consuming time, or another
commodity (performance index, or cost.).

Planning Problems in Behavior
Generation is frequently associated with the
domain of robotics or automated control systems
although it is absolutely equivalent to planning
in all other domains. Robotics became the
integrated research domain that provided for
blending the goals and testing the means of
achieving them, i.e. a domain with a direct need
for planning. In 1983, T. Lozano-Perez has
introduced the idea of search in "configurations
space". From the experience of using this search,
it became clear that the exhaustive search would
be computationally prohibitive if the
configuration space is tessellated with the final
accuracy required for motion control. The theory
of configuration space made one important thing
obvious: planning is searching for admissible
alternatives.  This development helped to realize
that planning should combine the exhaustive
(often meaningfully complex) search off-line,
and an efficient algorithm of an off-line control.
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At this period of time the engineering
community stopped talking about control of
actions and introduced a more balanced term of
Behavior Generation

The overview of the situation in the area
of planning and control can be found in [9]. The
recommended algorithm should be aligned with
the following suggestions. Consider the Ω  state
space in which the start and final points SP and
FP are given. The minimum cost path from SP to
FP is to be found with the final accuracy ρ.  Let
us consider particular cases Ω=Ω 1 and ρ=ρm. To
declare the final accuracy is equivalent to
applying some mechanism od space tessellation.
One of mechanisms of tessellation is distributing
discrete points in the state space. We will
distribute them in a random fashion and then,
will determine the minimum cost path while
considering these points as vertices of an
imaginary graph. The condition of constructing
random tessellation reflects uncertainties of the
system that should be available for evaluation
from the existing representation. In Figure 4,a
the random points are distributed in the state
space with obstacles. An example of the result of
running a minimum-cost algorithm in the
tessellated state space with obstacles is shown in
Figure. 4,b.

Since the graph is randomized, the
trajectory is a random one, too. If one runs the
search algorithm a number of times, we receive
the results of searching as a “stripe of solution”
as shown in Figure 5,a. Then, we get a privilege
to continue with constructing tessellations of
higher resolution only within this stripe as shown
in Figure 5,b. Then, when we run the minimum
cost search-algorithm only within this “finely”
tessellated stripe with high resolution density of
tessellata, we receive a high resolution plan. This
process can be repeated recursively within as
many levels as necessary.

We will introduce three operators that
describe the above computations.

I. Operator of Representation (ℜ)
ℜ :(Ω,ρ)→ M, or M=ℜ ( ,ρ)Ω

,        (1)
where M- is the map representing the state-

space Ω, ρ  is the level of resolution of this map
determined by the density of the search-graph that we
intend to run at this particular level of resolution
(determined by the accuracy ρ). This is a non-trivial
operator because it presumes discovery of entities,
putting them into relationships with each other,
generalization, instantiation and measuring
relationships (including costs).

a

b
Figure 4  Randomized tessellation of the state space (a)

and a single running of the minimum cost trajectory
algorithm (a rectangle and a trapeze – obstacles)

II. Operator of state space search (S3)
S3: (M, SP, FP, J, ρ)→P  , (2)

or P=S3(M),where P- is the optimum path connecting
the start point SP and the finish point FP with
tessellation constructed for the accuracy ρ. J- is the cost
of operation which should be minimized as a result of
search  S3. This operator should be based upon one of
the minimum-cost algorithms (e.g. Dijkstra) and
tailored for specifics of the problem.

III. Operator of space contraction (C)
which determines the width of stripe and the new final
goal for the algorithm of search.

C:(P, w)→Ω , or Ω=C(P), (3)
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where w- is the width of the “stripe” obtained
after several runs of the search algorithm. Instead of
“stripe” one can use the term “envelope”, (e.g. the
“width” is the parameter of the envelope).

a

b
Figure 5    Multiple running of the minimum cost
trajectory algorithm (a) and the uncertainty stripe

obtained as a result of the multiple running (b)

The hierarchical control algorithm can be
described as follows:
for k=1, ..., m do the following string of procedures:

a) Ω k=C(Pk-1), or at k=1 assume  Ω  k=Ω,

b) Mk= ℜ(Ω κ, ρk),

c) Pk= S3(Mk).

The algorithm of control can be represented as a
diagram

w               ρk          SP, FP, J

            ↓               ↓                ↓

Pk-1  →Χ → Ρ → Σ3  →Pk (4)

           ↑ Ω k       ↑ Mk
or a recursive expression

Pk=S3(R (C (Pk-1, w), ρk ) SP, FP, J) (5)

The algorithm (5) has proven to be good
for off-line search in the state space. In the class
of on-line problems the process of control is to
be described by the trajectory of “working point”
moving in the state space.

4. Learnable Representations
All Representation Spaces are acquired

from the external reality by the processes of
Learning. Many types of learning are mentioned
in the literature (supervised, unsupervised,
reinforcement, dynamic, PAC, etc.). We will
focus primarily on processes of unsupervised
learning [12]. Before classifying the needs for a
particular method of learning and deciding how
to learn, we would like to figure out what should
we learn.  Now, it is not clear whether the
process of learning can be separated
algorithmically into two different learning
processes: a) of objects representation , and b) of
the rules of action representation, or are these
two kinds of learning just two sides of the same
core learning process. In both cases, learning is
storing and generalizing information of
experiences with their values associated with
achieving particular goals.

The following knowledge should be
contained in the Representation Space. If no GS
is given, any pair of state representations should
contain implicitly the good rule of moving from
one state to another. In this case, we consider any
second state as a provisional GS.

 We will call “proper” representation a
representation similar to the mathematical
function and/or field description: at any point of
the space, the derivative is available together
with the value of the function. The derivative can
be considered an action required to produce the
change in the value of the function.

We will call “goal oriented”
representation a representation in which at each
point a value of the action is given required for
describing not the best way of achieving an
adjacent point but the best way of achieving the
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final goal. Both “proper” and “goal oriented”
representations can be transformed in each other.
Neither is mandatory for functioning: valued
memories of experiences (ME) are sufficient.

5. The Artifacts of Representation Space:
The Phenomenon of “Sea Weeds”

Representation as sets of valued ME is
characterized by the following artifacts:

 • existence of states with its boundaries
determined by the resolution of the space
each state is presented as a tessellatum [9], or
an elementary unit of representation, the
smallest discernible unit of attention)
 • characteristics of the tessellatum which is
defined as an indistinguishability zone; we
consider that resolution of the space shows
how far the “adjacent” tessellata (states) are
located from the “present state” (PS)
• lists of coordinate values at a particular
tessellatum in space and time
• lists of actions to be applied at a particular
tessellatum in space and time order to achieve
a selected adjacent tessellatum in space and
time
• existence of strings of states intermingled
with the strings of actions to receive next
consecutive tessellata of these strings of
states
• boundaries (the largest possible bounds of
the space with similar properties, i. e. the
obstacles
• costs of traversing from a state to a state and
through strings of states.

Figure 6. The sea weeds

When ME are clustered into classes of
similarity (e.g. of adjacency) they remind
visually masses of “sea weeds”. In many cases,
the states contain information pertaining to the
part of the world beyond our ability to control it,

and this part is called “environment.” The part of
the world to be controlled is the system for
which we plan often referred to as “self.” Thus,
the representation is a part of “self” including
knowledge about actions that “self” should
undertake in order to traverse the environment.
Plans are formed as strings of preferable “sea
weeds” combined together.

6. Planning in Redundant Systems
Non-redundant systems have a unique

trajectory of motion from one state to another.
Redundant systems are defined as systems with
more than one “the best” trajectory of motion
from initial (IS) to final states (FS)

These systems  contain a multiplicity of
alternatives of space traversal . Redundancy
grows when the system is considered to be a
stochastic one. The number of available
alternatives grows even higher when we consider
also a multiplicity of goal tessellata at a
particular level of resolution. This happens when
the goal is being assigning at a lower resolution
level which is the fact in multiresolutional
systems (such as NIST-RCS [8, 9])

In non-redundant systems, there is no
problem of planning. The problem is to find the
unique trajectory and to provide tracking of it by
an appropriate classical control system.

7. Learning as a Source of Representation:
Storing and Clustering “Sea Weeds”

Learning is defined as knowledge
acquisition via experience of functioning. Thus,
learning is development and enhancement of the
representation space. The latter can be
characterized in the following ways:

• by a set of paths (to one or more goals)
previously traversed
• by a set of paths (to one or more goals)
previously found and traversed
• by a set of paths (to one or more goals)
previously found and not traversed
• by a totality of (all possible) paths
• by a set of paths executed in the space in
a random way.

One can see that this knowledge
contains implicitly both the description of the
environment and the description of the actions
required to traverse a trajectory in this
environment.

All information arrives in the form of
experiences. The “learned” representation as a
set of strings of valued “sea weeds” is equivalent
to the multiplicity of explanations how to
traverse, or how to move.
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8. Types of Problems of Planning
Any problem of planning is associated

with
   • actual existence of the present state
   • actual, or potential existence of  the goal state
   • knowledge of the values for all or part of the
strings of executable states as far as some
particular goal is concerned.

Any problem of planning contains two
components: to refine the goal (bring it to the
higher resolution) and to determine the path to
this refined goal. They are performed together, or
separately and can be formulated as follows:

a) given PS, GS and KS find the subset
of KS with a minimum, or a prearranged cost, or
with a cost in a particular interval.

b) given PS, Gs from the lower
resolution level and KS (all paths) find the GS
with a particular value

Finding solutions for these problems is
done by a process of planning . In other words,
planning is a construction of the goal states,
and/or strings of preferable states connecting the
present state with the goal states. There is a
striking similarity and interrelatedness between
planning  and learning, actually their
inseparability.

In order to do this, we must learn where
the goal is located  by consecutive refinement of
the initial coarse information. In all cases it is
associated with reduction of the
indistinguishability zone and the size of the
tessellatum associated with a particular variable,
i.e. the accuracy of representation grows. We
plan and learn by testing: in the representation,
for planning, and in the reality, for learning.
Learning via testing simulated systems is
becoming more and more wide spread.

The second component is the simulation
of all available alternatives of the motion from
the initial state. Procedurally, this simulation is
performed as a search, i.e. via combinatorial
construction of all possible strings (groups). To
make this combinatorial search for a desirable
group more efficient we reduce the space of
searching by focusing attention.

The need in planning is determined by
the multialternative character of the reality The
process of planning can be made more efficient
by using appropriate heuristics which are
available via processes of learning.

9. The Unified System of Planning and
Learning: A Subsystem of MR DSS

The process of searching for plans is
associated either with collection of additional
information about experiences, or with extracting
from KS the implicit information about the state
and moving from state to state, for the purpose of
learning. In other words, planning is inseparable
from and complementary to learning .

This unified planning/learning process
is always oriented toward improvement of
functioning in engineering systems
(improvement of accuracy in an adaptive
controller, improvement of efficiency in energy
consuming devices) and/or toward increasing of
probability of survival (emergence of the
advanced viruses for the known diseases that can
resist various medications, e.g. antibiotics.)

This joint process can be related to a
system as well as to populations of systems and
determines their evolution.

Figure 7. On the relations between planning and
learning

10. Planning, Learning, and Control: A
Unified Theory

Learning/Planning Automaton . The
joint Planning/Learning process is studied by
using a tool of Learning/planning automata
(LPA) is a tool that allows for jointly exploring
these two fundamental processes of intelligent
systems. Naturally, it becomes a component of
the Multiresolutional DSS.

Elementary Computations. Search (S)
is always performed by constructing feasible
combinations of the states within a subspace
(“feasible” means: satisfying a particular set of
conditions or constraints.) As many as possible
alternatives of feasible motions should be
explored and compared. If search is combined
with formation of alternatives, we call this
procedure combinatorial search (CS).
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Usually, grouping (G) presumes
exploratory construction of possible
combinations of the elements of space and as one
or many of these combinations satisfy conditions
of “being an entity”, this group generates a new
symbol with subsequent treating it as an object.

The larger the space of search is, the
higher is the computational complexity of search.
This is why a special effort is allocated with
reducing the space of search, i.e. focusing
attention (FA) upon reduced sub-spaces. FA
results in determining two conditions of
searching, namely, its upper and lower
boundaries:

a) the upper boundaries of the space
where the search is to be performed, the scope

b) the resolution of representation (the
lower boundaries, the tesselatum)

Via exploring these experiences in
planning and learning we arrive at a conclusion
that they are always employ these three
procedures: grouping, focusing attention and
combinatorial search (or subsets of them).

The property of Intelligence. Forming
multiple combinations of entities (combinatorial
search, CS) satisfying required conditions of
transforming them into new entities (grouping,
G) within a bounded subspace (focusing
attention, FA) is frequently performed as a
fundamental set of procedures. Since these three
procedures work together we will talk about
them as about a triplet of computational
procedures  (the abbreviations GFACS or CFS
are used.) Notice, that in learning it creates lower
resolution levels out of higher resolution levels
(bottom-up) while in planning it progresses from
lower resolution levels to higher resolution levels
(top-down). This algorithmic triplet emerges as a
tool of multiresolutional representation and/or
for the purposes of generating goal-oriented
behaviors.

This triplet of computational procedures
is characteristic for intelligence of living
creatures and constructed systems, and probably
is the elementary computational unit for

The need in GFACS is stimulated by
the property of knowledge representations to

contain a multiplicity of alternatives of space
traversal (i. e. a property of any representations
to be redundant.) Representations reduce the
redundancy of reality. This allows for having
problems that can be solved in a closed form (it
is a form when no combinatorics is possible
and/or necessary).

At each level of resolution, planning is
done as a reaction for the slow changes in
situation which invokes the need in anticipation
and active interference

a) to take advantage of the growing
opportunities, or

b) to take necessary measures before the
negative consequences occur.

The deviations from a plan are
compensated for by the compensatory
mechanism also in a reactive manner. Thus, both
feedforward  control (interpreted as planning at
all levels of resolution but the highest one) and
feedback  compensation of deviations are reactive
activities. Both can be made active in different
implementation approaches in control theory.
Examples:  a) Classical control systems are
systems with no redundancy, they can be solved
in a closed form without searching.
  b) Any stochastic condition, any type of
uncertainty introduced to a control system
creates redundancy and requires either for
elimination of redundancy or performing search.
  c) Optimum control allows for the degree of
redundancy that makes searching feasible.

In Figure 8, the process of
multiresolutional planning via consecutive
search with focusing attention and grouping is
demonstrated for the control problem of finding
a minimum-time motion trajectory. From Figure
8, one can judge the processes that are performed
during the single level S3-search in the
randomized tessellated state space. The reader
can identify the processes because a trivial
example is considered: minimum time
functioning of the dynamic system. The
operation won’t change if one is dealing with
higher order and/or non-linear system.

intelligence. Its purpose is transformation of
large volumes of information into a manageable
form that ensures the success of functioning.
This explains the pervasive character of
hierarchical architectures in all domains of
activities including Decision Support Systems.

The space is learned and encoded in
advance by multiple testing, and its
representation is based upon knowing that the
distance, velocity and time are linked by
nonredundant expression. Several methods of
constructing attention envelopes are applied.
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Figure 8. S3-Search in the state space for the minimum tyme dynamic trajectory

Conclusions
We have demonstrated the advantages

of Multiresolutional Decision Support Systems that
can be listed as follows:
1. Multiresolutional System of Knowledge
Organization allows to reduce complexity and
increase efficiency of representation.
2.Most of the Planning/Control problems are being
solved via S3-search (Search in the State Space). The
latter requires performing randomized state space
tessellation with density of points that reflects the
uncertainty of information. Multiresolutional S3-
search allows for stochastic optimization of systems.
3. Representations at each level of resolution are
organized as memories of experiences and do not
require constructing any analytical model: this
system plans and controls with no model required.
4. This representation supports processes of
unsupervised learning that contains self-oriented
information; no special self-identification is required.
5. The MRDS system was tested in applications to
power station energy efficient planning/control
system, for planning/control of an unmanned
autonomous mobile or spray-casting robots.
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